
1

© 2008 IBM
Corporation

IBM Power Systems Software

The ABCs of Coding High Performance SQL Apps
DB2 for IBM i

Presented by Jarek Miszczyk
IBM Rochester, ISV Enablement

© 2008 IBM Corporation

IBM Power Systems Software

SLIC

SQL

Static

Compiled
embedded
statements

Extended
Dynamic

Prepare once and
then reference

Dynamic

Prepare every
time

DB2
(Data Storage & Management)

Host Server CLI/JDBC/PHP

Query Optimizer

ODBC / JDBC / ADO / DRDA / XDA

Native
(Record

I/O)

Network

SQL Interfaces

2

© 2008 IBM Corporation

IBM Power Systems Software

Database

User Display I/O

Communications

Authentication

Disk I/O

Output Results

Process Request

Optimization

RunTime

Open
Processing

ƒJournaling
ƒIndex Maintenance
ƒConstraint Enforcement
ƒLocking
ƒTrigger Processing

ƒODP Creation
ƒDatabase

Authentication

ƒAccess Plan Creation
ƒIndex Estimates

BEGIN

END

Measuring & Monitoring DB2 Performance

© 2008 IBM Corporation

IBM Power Systems Software

Static SQL

�Non-dynamic SQL statements embedded in application
programs

�Languages Supported:
– RPG

– COBOL

– C, C++

– SQL Procedural Language
• SQL embedded in C

– PL/I

�Most efficient SQL interface on IBM i

3

© 2008 IBM Corporation

IBM Power Systems Software

Dynamic SQL

�SQL statements are dynamically created on the fly a s
part of application logic:

PREPARE, EXECUTE, EXECUTE IMMEDIATE

DSTRING = 'DELETE FROM CORPDATA.EMPLOYEE
WHERE EMPNO = 33';

EXEC SQL
PREPARE S1 FROM :DSTRING;

EXEC SQL
EXECUTE S1;

© 2008 IBM Corporation

IBM Power Systems Software

Dynamic SQL Interfaces

�DB2 for i interfaces that utilize Dynamic SQL...
– CLI

– JDBC

– Net.Data

– RUNSQLSTM

– Interactive SQL (STRSQL)

– PHP

– SQLJ

�Greater performance overhead since DB2 does not kno w
what SQL is being executed ahead of time

–Embedded Dynamic SQL

–ODBC, OLE DB, .NET

–System i Navigator SQL requests

–REXX

–Query Manager & Query Mgmt

–DB2 Web Query

4

© 2008 IBM Corporation

IBM Power Systems Software

Source
Program
w/SQL

Program Object (*PGM)
or Module Object (*MODULE)

SQL Precompiler &
Language compiler

Access
Plan

Each SQL statement is
-Parsed
-Validated for syntax
-Optimized

as access plan created
for the statement

Static SQL View

No plan built by SQE during compile
Plan built on first execution

Access Plans

© 2008 IBM Corporation

IBM Power Systems Software

Access Plans

Plan Contents:
�A control structure that contains info on the actio ns

necessary to satisfy each SQL request
�These contents include:

– Access Method
Access path ITEM used for file 1.
Key row positioning used on file 1.

– Info on associated tables and indexes

• Used to determine if access plan needs to be rebuilt due to table
changes or index changes

• EXAMPLE: a column has been removed from a table since the
last time the SQL request was executed

– Any applicable program and/or environment info

• Examples: Last time access plan rebuilt, DB2 SMP feature
installed

5

© 2008 IBM Corporation

IBM Power Systems Software

Dynamic
SQL

statement

Working Memory
for Job

Access
Plan

Each Dynamic SQL PREPARE is
-Parsed
-Validated for syntax
-Optimized

as access plan created
for the statement

Dynamic SQL View

• Less sharing & reuse of resources

No plan built by SQE on Prepare
Plan built on first execution or open

Access Plans

© 2008 IBM Corporation

IBM Power Systems Software

Dynamic
SQL

statement

SQL Package (*SQLPKG)

Access
Plan

Each Dynamic SQL PREPARE is
-Parsed
-Validated for syntax
-Optimized

as access plan created
for the statement

Extended Dynamic SQL View

Has this Dynamic
request been

previously
executed?

Access Plans

No plan built by SQE on Prepare
Plan built on first execution or open

6

© 2008 IBM Corporation

IBM Power Systems Software

OPENing the Access Plan

�Validate the Access Plan
� IF NOT Valid, THEN Reoptimize & update plan (late b inding)

– Some of the more common reasons:

• Different version of table object referenced (A1)
• Significant change in Table row count (A4)

• Index added (A5) or Index removed (A6)
• Change in memory pool size (AB)

– CQE optimizer only rebuilds plan when there has been a 2X change in
memory pool size and runtime estimate greater than 2 seconds

– SQE optimizer only rebuilds plan with a 2X change in memory pool size

– All reasons document in DB2 Database Performance & Query
Optimization book (or System Message IDs: CPI4323 & CPI4321)

� Implement Access Plan: CREATE ODP (Open Data Path)

© 2008 IBM Corporation

IBM Power Systems Software

SELECT * FROM customers
WHERE state=:HV1
HV1 = 'NY'

SELECT * FROM customers
WHERE state=:HV1
HV1 = 'IA'

Additional Access Plan Rebuild Reasons

�Changes in the values of host variables and paramet er markers
– Monitor reason code (A4 – 0002) for this type of plan rebuild, joblog rebuild

messages may not be generated

– Optimizer determines if new value changes "selectivity" enough to warrant a
rebuild as part of plan validation...

•When value used in selection against chosen index and selectivity is
10% different than value used with current access plan.

– Selectivity change needs to be greater when Optimization time exceeds prior run
time

– CQE rebuild rules for selectivity rebuilds are similar

– If program/package history shows current access plan used frequently in the
past, then new access plan being built for data skew will be built as a
temporary access plan

7

© 2008 IBM Corporation

IBM Power Systems Software

Access Plan Rebuild Considerations

� Access plan updates are not always done in place

– If new space alllocated for rebuilt access plan, then size of program &
package objects will grow over time - without any changes to the objects

– Recreating program object is only way to reclaim "dead" access plan
space

• IBM utility now available: CALL QSYS/QSQCMPGM PARM('MYLIB'
'EMBPGM1')

• DB2 has background compression algorithms for extended dynamic
SQL packages

� Static embedded SQL interfaces can have temporary a ccess plan builds

– If DB2 unable to secure the necessary locks to update the program object,
then a temporary access plan is built instead of waiting for the locks

– If SQL programs have a heavy concurrent usage, may want to do more
careful planning for Database Group PTF updates or IBM i upgrades

• New IBM i releases causes all access plans to be rebuilt

© 2008 IBM Corporation

IBM Power Systems Software

PLAN 1

SQE Plan Cache

SQL Pgm-A

PLAN 3

PLAN 6

Statement 1

Statement 2

Statement 1

Statement 2 Statement 3

Statement 3

Dynamic SQL

SQL Pkg-1

SQL Pgm-B

CQE Plan

SQE Plan

Legend:

SQE Plan Cache

Statement 4

Statement 6

Statement 5

Job Cache

SystemWide Stmt Cache

Statement 3

Statement 4

Statement 6

Statement 5

8

© 2008 IBM Corporation

IBM Power Systems Software

SQE Plan Cache

�Self-managed cache for all plans produced by SQE Op timizer
– Allows more reuse of existing plans regardless of interface for identical SQL statements

• Room for about 6000-10000 SQL statements
• Plans are stored in a compressed mode
• Up to 3 plans can be stored per SQL statement

– Access is optimized to minimize contention on plan entries across system

– Cache is automatically maintained to keep most active queries available for reuse

– Foundation for a self-learning query optimizer to interrogate the plans to make wiser
costing decisions

�SQE Access Plans actually divided between Plan Cach e &
Containing Object (Program, Package, etc)

– Plan Cache stores the optimized portion (e.g., the index scan recipe) of the access plan

– The access plan components needed for validating an SQL request (such as the SQL
statement text and object information) is left in the original access plan location along
with a virtual link to the plan in the Plan Cache

– Plan cache entry also contains information on automatic stats collection & refresh

�Plan Cache is cleared at IPL

© 2008 IBM Corporation

IBM Power Systems Software

ACCESS
PLAN

Internal Structures

OPEN DATA PATH
(ODP)

Executable code for all
requested I/O operations

CREATE

�Create process is EXPENSIVE
– Longer execution time the first time an SQL statement is executed

�Emphasizes the need of REUSABLE ODPs

Access Plan to ODP

9

© 2008 IBM Corporation

IBM Power Systems Software

Disk

Memory

Job Structure

ODPODPODPODPODP

Physical I/O

INDEX

TABLE

Logical I/O

Application
Program

SQL Request

ODP's "In Action"

© 2008 IBM Corporation

IBM Power Systems Software

OPEN Optimization

�OPENs can occur on:
– OPEN Statement

– SELECT Into Statement

– INSERT statement with a VALUES clause

– INSERT statement with a SELECT (2 OPENs)

– Searched UPDATE's

– Searched DELETE's

– Some SET statements

– VALUES INTO statement

– Certain subqueries may require one Open per subselect

�The request and environment determine if the OPEN
requires an ODP Creation ("Full" Open)

10

© 2008 IBM Corporation

IBM Power Systems Software

OPEN Optimization

Reusable ODPs
�To minimize the number of ODPs that have to be crea ted,

DB2 leaves the ODP open and reuses the ODP if the
statement is run again in job (if possible)

– Reusable ODPs consume 10 to 20 times less CPU resources than a
new ODP

– Two executions of statement needed to establish reuse pattern

• Execution statistics per statement are maintained for plans stored
in SQL Package and Program objects…

• Analysis of these stats enables DB2 to restart ODP reuse after 1st

execution in some cases

– An ODP consumes about 1 MB of storage (dependent on SQL
request)

© 2008 IBM Corporation

IBM Power Systems Software

�Validate Access Plan

�IF NOT Valid, THEN

Reoptimize & update plan

(late binding)

�Create the ODP

Reusing the ODP steps

� IF First or Second Execution of
Statement
THEN...

ELSE
IF Non-Reusable ODP THEN...

ELSE Reusable ODP - Do Nothing

� Run SQL request

� Delete ODP or Leave ODP open for
Reuse?

– ODP will not be deleted after second
execution

� Loop back to #1

11

© 2008 IBM Corporation

IBM Power Systems Software

Reusable ODP Example
SQL7912 ODP created.

SQL7912 ODP created.

...

SQL7913 ODP deleted.

SQL7913 ODP deleted.

SQL7985 CALL statement complete

SQL7912 ODP created.

SQL7912 ODP created.

...

SQL7914 ODP not deleted.

SQL7914 ODP not deleted.

SQL7985 CALL statement complete

SQL7911 ODP reused.

SQL7911 ODP reused.

...

...

SQL7914 ODP not deleted.

SQL7914 ODP not deleted.

SQL7985 CALL statement complete

INSERT INTO resultTable
SELECT id, name

FROM customers
WHERE region = 'Central'

OPEN Optimization

© 2008 IBM Corporation

IBM Power Systems Software

Access
Plan

Access
Plan

Connection/Job #1

ODPs & Plans In Action

SELECT c1
FROM t2
WHERE c3 = ?

Stmt Run #1 (1:01)

ODP Created
ODP Deleted

ODP

Stmt Run #2 (1:02)
ODP Created
ODP Not Deleted

ODP

Stmt Run #3 (1:05)
ODP Reused

Connection/Job #2

Stmt Run #1 (1:03)
ODP Created
ODP Deleted

ODP

12

© 2008 IBM Corporation

IBM Power Systems Software

Miscellaneous considerations

Reusable ODP Control - QSQPSCLS1 Data Area

�Existence of data area allows the reuse behavior af ter first
execution of SQL statement instead of the second
execution
– DB2 checks for data area named QSQPSCLS1 in job's library list -

existence only checked at the beginning of the job (first SQL ODP)

– USE CAREFULLY since cursors that are not reused will consume extra
storage

– Data area contents, type, and length are not applicable

© 2008 IBM Corporation

IBM Power Systems Software

Reusable ODP Tips & Techniques

13

© 2008 IBM Corporation

IBM Power Systems Software

PROGRAM1
…
SELECT name FROM employee
INTO :hostvar2
WHERE id=:hostvar1
...

OPEN Optimization - Reuse Roadblocks

�With static SQL, ODPs are NOT reused for the same SQL
statement in different program objects

– Program objects include: Service Programs, SQL Procedures &
Functions

PROGRAM2
…
SELECT name FROM employee
INTO :hostvar2
WHERE id=:hostvar1
...

ODP-1

ODP-2

© 2008 IBM Corporation

IBM Power Systems Software

SEPARATE ODP

UPDATE orders
SET status = :newstat
WHERE id=:hostvar

...

UPDATE orders
SET status = :newstat
WHERE id = :hostvar
...

SINGLE REUSABLE ODP

CALL Proc1
...
CALL Proc1
...

Proc1:=========
UPDATE orders

SET status = :newstat
WHERE id=:hostvar

OPEN Optimization - Reuse Roadblocks

�With static SQL, DB2 only reuses ODPs opened
by the same statement

– If same statement will be executed multiple times, need to code
logic so that statement is in a shared subroutine that can called

ODP-1

ODP-2 ODP-1

14

© 2008 IBM Corporation

IBM Power Systems Software

OPEN Optimization - Reuse Roadblocks

Location of DB2 objects may have changed:
–Unqualified table and the library list has changed since the

ODP was opened with *SYS naming mode (RC: O)
• If table location is not changing (library list just changing for other
objects), then default collection can be used to enable reuse

• Default collection exists for static, dynamic, and extended dynamic
SQL

– SET CURRENT SCHEMA to specify default schema for
dynamic SQL

–Override Database File (OVRDBF) or Delete Override
(DLTOVR) command issued for tables associated with an
ODP that was previously opened (RC: J)

–SQL Path changed effecting resolution of UDF Calls (RC: J)

–Program being shared across Switchable Independent
ASPs (IASP) where library name is the same in each IASP

© 2008 IBM Corporation

IBM Power Systems Software

OPEN Optimization - Reuse Roadblocks

�SET SESSION AUTHORIZATION statement (RC: Q)

�System CL commands such as CLRPFM (RC: G)

�Commit or Rollback involving Declared Temporary Tab le
that was created with “ON COMMIT DELETE ROWS” (RC: E)

�Commit or Rollback due to the abnormal termination of a
database connection (RC: E)

�Temporary tables when multiple jobs are sharing the same
program

15

© 2008 IBM Corporation

IBM Power Systems Software

OPEN Optimization - Reuse Roadblocks

�ODP requires temporary index
– Temporary index build does not always cause an ODP to be non-

reusable, optimizer does try to reuse temporary index if possible

• If SQL run multiple times and index is built on each execution,
creating a permanent index could make ODP reusable

• If host variable value used to build selection into temporary index
(ie, sparse), then ODP is not reusable because temporary index
selection can be different on every execution of the query

– Optimizer will tend to avoid creating sparse indexes if the statement
execution history shows it to be a "frequently executed" statement

– Temporary indexes are not usable by other ODP's, unless they are
SQE Autonomic Indexes

© 2008 IBM Corporation

IBM Power Systems Software

OPEN Optimization
UPDATE WHERE CURRENT OF Reuse

� If an UPDATE WHERE CURRENT OF request contains a fu nction or
operator on the SET clause, then an open operation must be performed

� Can avoid this open by performing the function or o peration in the host
language

– Code operation into host language...

FETCH EMPT INTO :Salary;
Salary = Salary + 1000;
UPDATE EMPLOYEE

SET Salary = :Salary
WHERE CURRENT OF Empt;

– Instead of...
FETCH EMPT INTO :Salary;
UPDATE Employee

SET Salary = :Salary+1000
WHERE CURRENT OF Empt;

16

© 2008 IBM Corporation

IBM Power Systems Software

OPEN Optimization - Reuse Considerations

�Reusable ODP's do have one shortcoming... once reus e
mode has started access plan is NOT rebuilt when th e
environment changes

–What happens to performance if Reusable ODP is now run
against a table that started out empty and that table is now
substantially bigger than the first execution? ***

–What if index added for tuning after 5th execution of
statement in the job? ***

–What if selectively of host variable or parameter marker
greatly different on 5th execution of statement?

–***NOT an issue with SQE since V5R3 – SQE recognizes new
indexes and table size changes while in ODP reuse mode (RC: A)

© 2008 IBM Corporation

IBM Power Systems Software

Dynamic & Extended Dynamic SQL

17

© 2008 IBM Corporation

IBM Power Systems Software

Dynamic SQL Tuning
�With Dynamic interfaces, full opens are avoided by

using a "PREPARE once, EXECUTE many" design point
when an SQL statement is going to be executed more
than once

�A PREPARE does NOT automatically create a new ODP
on each execution

–DB2 performs caching on PREPARE & OPEN within a
job/connections

–DB2 caching is not perfect (and subject to change)
• White space and different case (upper vs lower) will negatively impact the
DB2 caching

• DB2 caches reside in the System ASP in a Switchable IASP environment

–Good application design is ONLY way to guarantee ODP
reuse

© 2008 IBM Corporation

IBM Power Systems Software

Dynamic SQL Tuning - Parameter Markers

�Parameter Markers are one implementation method for
"EXECUTE many"

–Improves chance for reusable ODPs

–Ex: want to run the same SELECT statement several times
using different values for customer state

•50 different statements/opens for each of the states
OR...

•Single SQL statement that allows you to plug in the
needed state value

–DB2 does attempt to automate this behavior

18

© 2008 IBM Corporation

IBM Power Systems Software

Dynamic SQL Tuning- Parameter Markers

Parameter Marker Example

StmtString = 'DELETE FROM employee WHERE empno=?';
...

PREPARE s1 USING :StmtString;
...

EXECUTE s1 USING :InputEmpNo;
...

© 2008 IBM Corporation

IBM Power Systems Software

Automatic Parameter Marker Conversion

• DB2 automatically tries to convert literals into parameter
markers to make statement look repetitive

SELECT name, address FROM customers
WHERE orderamount > 1000.00 AND state = 'NY'

CONVERTED
TO:

SELECT name, address FROM customers
WHERE orderamount > ? AND state = ?

UPDATE customers SET status = 'A'
WHERE orderamount >= 10000

CONVERTED
TO:

UPDATE customers SET status = ?
WHERE orderamount >= ?

Dynamic SQL Tuning - Parameter Markers

19

© 2008 IBM Corporation

IBM Power Systems Software

Extended Dynamic & Packages

�Package is searched to see if there is a statement with
the same SQL and attributes

– Hash tables used to make statement searches faster

� If a match is found, then a new statement entry nam e is
allocated with a pointer to the existing statement
information (access plan, etc)

– DB Monitor can be used to determine if "packaged" statement used at
execution time:

SELECT qqc103, qqc21, qq1000 from ‹db monitor table›
WHERE qqrid=1000 AND qvc18='E'

© 2008 IBM Corporation

IBM Power Systems Software

STATEMENT NAME: QZ7A6B3E74C31D0000

Select IID, INAME, IPRICE, IDATA from TEST/ITEM where
IID in (?, ?, ?, ?)

SQL4021 Access plan last saved on 12/16/96 at 20:21:45.
SQL4020 Estimated query run time is 1 seconds.
SQL4008 Access path ITEM used for file 1.
SQL4011 Key row positioning used on file 1.

...
STATEMENT NAME: QZ7A6B3E74DD6D8000

Select CLAST, CDCT, CCREDT, WTAX from TEST/CSTMR,
TEST//WRHS where CWID=? and CDID=?

SQL4021 Access plan last saved on 12/16/96 at 20:21:43.
SQL4020 Estimated query run time is 1 seconds.
SQL4007 Query implementation for join position 1 file 2.
SQL4008 Access path WRHS used for file 2.
SQL4011 Key row positioning used on file 2.
SQL4007 Query implementation for join position 2 file 1.
SQL4006 All access paths considered for file 1.
SQL4008 Access path CSTMR used for file 1.
SQL4014 0 join field pair(s) are used for this join position.
SQL4011 Key row positioning used on file 1.

Package Contents:
• Statement name
• Statement text
• Statement parse tree
• Access Plan

PRTSQLINF output

Extended Dynamic & Packages

20

© 2008 IBM Corporation

IBM Power Systems Software

Extended Dynamic & Packages

�Advantages of using Extended Dynamic SQL
Packages:

–Shared resource available to all users

•Access information is reused instead of every job and every
user "re-learning" the SQL statement

–Permanent object that saves information across job termination
and system termination

•Can even be saved & restored to other systems

–Improved performance decisions since statistical information is
accumulated for each SQL statement

© 2008 IBM Corporation

IBM Power Systems Software

Extended Dynamic & Packages

The Interfaces
�System API - QSQPRCED

– API user responsible for creating package

– API user responsible for preparing and descrbing statement into package

– API user responsible for checking existince of statement and executing
statements in the package

�XDA API set
– Abstraction layer built on top of QSQPRCED for local and remote access

�Extended dynamic setting/configuration for IBM iSer ies
Access ODBC driver & iSeries Java Toolkit JDBC driv er

– Drivers handle package creation

– Drivers automate the process of adding statements into the package

– Drivers automate process of checking for existing statement and executing
statements in the package

21

© 2008 IBM Corporation

IBM Power Systems Software

Extended Dynamic & Packages

Considerations:
�Any SQL statement that can be prepared is eligible

–ODBC & JDBC drivers have further restrictions

�Size limitations
–Current size limit is 500 MB, about 16K statements

•Maximum size can be increased to ~1TB by using the
SQL_INCREASE_PKG_LIMIT QAQQINI option

•Package can grow without new statements being added.
Access plan rebuilds require additional storage

–DB2 does try to perform package compression in the
background to increase life & usefulness of package objects

�SQL Package Online FAQ:
http://ibm.com/systemi/db2/sqlperffaq.html

© 2008 IBM Corporation

IBM Power Systems Software

SQL Performance
Techniques & Considerations

22

© 2008 IBM Corporation

IBM Power Systems Software

VARCHAR considerations

�Variable length columns (VARCHAR/VARGRAPHIC)
– If primary goal is space saving, include ALLOCATE(0) with VARCHAR

definition

– If primary goal is performance, ALLOCATE value should be wide enough to
accommodate 90-95% of the values that will be assigned to the varying
length column

• Minimizes number of times that DB2 has to touch data in overflow
storage area

– BLOB/CLOB columns stored in the same overflow container

�VARCHAR columns more efficient on wildcard searches
– DB2 able to stop searching after the end of the string - with fixed length

characters it must search to the end of string, even if all blanks

© 2008 IBM Corporation

IBM Power Systems Software

Fixed Length
Primary
Storage

Variable
Length
Auxilary
Storage

CREATE TABLE dept
(

id CHAR(4),
name VARCHAR(40),
bldg_num INTEGER

)

Fixed & "Variable"
Length Storage

CREATE TABLE dept
(

id CHAR(4),
name VARCHAR(40)

ALLOCATE(40),
bldg_num INTEGER

)

05 SALES

VARCHAR considerations

23

© 2008 IBM Corporation

IBM Power Systems Software

SQL Table considerations

�SQL-created tables are faster on reads and slower o n writes
that DDS-created tables

�Tables with high number of concurrent inserts may a lso
benefit from Concurrent Insert feature ("Holey Inse rts")

– Activated by doing a CALL QDBENCWT '1' & then IPLing system

– Default starting with V5R3, unless the release is slip-installed

� If you have tables that receive a high-velocity of inserts in
concurrent enviroments, then it may be beneficial t o pre-
allocate storage for the table

– CHGPF FILE(lib/table1) SIZE(125000 1000 3) ALLOCATE(*YES)

– After CHGPF, a CLRPFM or RGZPFM command must be executed to
"activate" the allocation

© 2008 IBM Corporation

IBM Power Systems Software

BEGIN
DECLARE CONTINUE HANDLER

FOR SQLSTATE ' 23504'...
...
DELETE FROM master WHERE id=1;
...

BEGIN
...

BEGIN
DECLARE CONTINUE HANDLER FOR

SQLSTATE ' 23504'...
DELETE FROM master WHERE id=1;

END
...

Stored Procedures
� Procedures most effective from a performance perspe ctive when

multiple operations performed on a single procedure call
� SQL Procedure Language (PSM) considerations

– Generated C code with embedded SQL will not be as efficient as user-written code,
big improvements with V5R4

– No support for blocked fetches & inserts

– Local variable suggestions
• Declare local variables as not null
• Use integer instead of decimal precision with 0
• Minimize the usage of character & date variables
• Use the same data type, length and scale for numeric variables that are used

together in assignments

– Minimize the number of nested calls to other SQL procedures

– Consider moving handlers for a specific condition/statement within a nested
compound statement

24

© 2008 IBM Corporation

IBM Power Systems Software

Additional Information

� IBM Workshop -
ibm.com/systemi/db2/db2performance.html

(being offered in Rochester in April)
AND... PRACTICE, PRACTICE, PRACTICE

�Tools to help get started and make tuning easier:
– insureSQL from Centerfield Technology (insureSQL.com)

– IBM System i Navigator

�Whitepaper on Indexing Strategy:
ibm.com/servers/enable/site/education/ibo/register.html?indxng

© 2008 IBM Corporation

IBM Power Systems Software

Additional Information
� DB2 for i Websites

–Home Page: ibm.com/systems/i/db2
–DeveloperWorks Zone: ibm.com/developerworks/db2/products/db2i5OS
–Porting Zone: ibm.com/servers/enable/site/db2/porting.html

� Newsgroups
–USENET: comp.sys.ibm.as400.misc, comp.databases.ibm-db2

–System i Network DB2 Forum -
http://systeminetwork.com/isnetforums/forumdisplay.php

� Education Resources - Classroom & Online
– ibm.com/systems/i/db2/gettingstarted.html

– ibm.com/partnerworld/wps/training/i5OS/courses
� DB2 for i Publications

–White Papers: ibm.com/partnerworld/wps/whitepaper/i5OS

–Online Manuals: ibm.com/systems/i/db2/books.html
–DB2 for i5/OS Redbooks (http://ibm.com/redbooks)

• OnDemand SQL Performance Analysis … in V5R4 (SG24-7326)

• SQL Performance Diagnosis on IBM DB2 for i5/OS (SG24-6654)
• Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS (SG24-6598)

