
1

®

IBM Software Group

© 2009 IBM Corporation

What’s new in RPG for V6.1

Barbara Morris
IBM

IBM Rational software

2

ILE RPG enhancements - overview

Major enhancements for ILE RPG include
� Data structure type definitions

� No more compile-time overrides

� Defining files locally in subprocedures, and passing files as parameters

� Significantly higher limits for the size of variables and array elements

� A new kind of RPG main procedure

� Relaxation of some UCS-2 rules (available for V5R3/4 through PTFs)

� Run concurrently in multiple threads; RPG doesn’t have to be a bottleneck

� PTF: New options for XML-INTO

2

IBM Rational software

3

ILE RPG – TEMPLATE definitions

RPG programmers often code variable definitions that are intended as “type
definitions”, to be used by later LIKE or LIKEDS definitions. To prevent
the compiler from defining storage for these definitions, they code the
BASED keyword, hoping that no maintenance programmer will try to use
the definitions as program variables.

The RPG compiler supports INZ(*LIKEDS) to initialize a LIKEDS data with
the same initialization value as the parent data structure, but initialization
values are not supported with the BASED keyword.

TEMPLATE solves both these problems:
�The compiler doesn’t allow the definition to be used as program variable.
�The INZ keyword is supported with TEMPLATE, so default initializations can be coded

for a template data structure

IBM Rational software

4

TEMPLATE example – defining the template

D custId_t S 10A TEMPLATE

D CUST_ID_NOT_SET...

D C -1

D custInfo_t DS TEMPLATE

D QUALIFIED

D name 35A VARYING

D city 25A VARYING

D INZ('Toronto')

D province 25A VARYING

D INZ('Ontario')

D postal 6A INZ(*BLANKS)

D id LIKE(custId_t)

D INZ(CUST_ID_NOT_SET)

3

IBM Rational software

5

TEMPLATE example – using the template

D cust1 DS LIKEDS(custInfo_t)INZ

D cust2 DS LIKEDS(custInfo_t)

D INZ(*LIKEDS)

Both CUST1 and CUST2 are defined like the template data
structure, so they have subfields NAME, CITY etc.

CUST1 has default initializations, so CUST1.CITY is initialized
with an empty name.

CUST2 is initialized with *LIKEDS, so CUST2.CITY is initialized
with ‘Toronto’.

IBM Rational software

6

ILE RPG – avoid compile-time overrides

A common complaint by RPG programmers is that they have to
do file overrides at compile time, for externally-described files
and data structures.

RPG added the EXTFILE keyword in V5R1, which removed
most of the necessity to do overrides at runtime, but the
EXTFILE keyword was not used at compile time.

A new F spec keyword EXTDESC handles this problem for
files, and an enhancement to the EXTNAME keyword handles
this problem for data structures.

4

IBM Rational software

7

ILE RPG – avoid compile-time overrides

For F specs, new keyword EXTDESC and enhanced keyword
EXTFILE(*EXTDESC)

� EXTDESC(‘LIBNAME/FILENAME’) or
EXTDESC(‘FILENAME’) locates the file at compile time

� EXTFILE(*EXTDESC) indicates that the file specified by
EXTDESC is also to be used at runtime.

For D specs, the EXTNAME keyword is enhanced

� EXTNAME(‘LIBNAME/FILENAME’) or
EXTNAME(‘FILENAME’) locates the file for the data structure
at compile time.

IBM Rational software

8

ILE RPG – local files

V6.1 introduces the ability for RPG programmers to define files
locally in subprocedures. This has two main advantages:
1. Maintainability : Prior to V6.1, all files had to be defined globally.

There was no way for an RPG programmer to limit the file’s access to
only one subprocedure, which could cause some maintenance
difficulties. By coding the file definition in a subprocedure, the RPG
programmer can explicitly limit the file’s access to only that
subprocedure.

2. Reduction of static storage: Defining the file locally reduces of the
static storage required by the module, if the file is defined to use
automatic storage for the internal storage required to manage the file.

5

IBM Rational software

9

ILE RPG – local files – some rules

� Local F specifications follow the Procedure-begin
specification and precede the Definition specifications.

� I/O to local files can only be done with data structures.
There are no I and O specifications for local files.

� By default, the storage associated with local files is
automatic; the file is closed when the subprocedure returns
normally or abnormally.

� The STATIC keyword can be used to indicate that the
storage associated with the file is static, so that all
invocations of the procedure will use the same file. If a static
file is open when the procedure returns, it will remain open
for the next call to the procedure.

IBM Rational software

10

ILE RPG – local files – example 1

P fixPostalCode B

Fcust UF E DISK

D custDs E DS EXTNAME(cust:*INPUT)

/free

read custrec custDs;

dow not %eof;

if postCode = ‘ ‘;

postCode = getPostalCode(addr:city:prv);

update custRec custDs;

endif;

read custrec custDs;

enddo;

The file is not defined with STATIC, so it will be closed when the procedure ends.

6

IBM Rational software

11

ILE RPG – local files – example 2

P getCust B

Fcust IF E K DISK STATIC

D getCust PI N

D id LIKE(custrec.id)

D CONST

D custDs LIKEREC(custrec)

/free

chain id custrec custDs;

return %FOUND;

The file is defined with STATIC, so it will stay open when the
procedure ends.

IBM Rational software

12

ILE RPG – qualified record formats

Another file-related enhancement is Qualified record formats.
Using qualified record formats makes it easier to read and
maintain RPG code.

Consider this code which does not use any qualified names:
read custRec custDs;

if not %eof(inFile);

if amtOwing > 1000;

Compare to this version which uses qualified names for the file
and the data structure:

read inFile.custRec custDs;

if not %eof(inFile);

if custDs.amtOwing > 1000;

7

IBM Rational software

13

ILE RPG – qualified record formats

Some of the rules for using qualified formats:

� When a file is defined with the QUALIFIED keyword, the
record formats must be qualified by the file name,
MYFILE.MYFMT.

� Qualified files do not have I and O specifications generated
by the compiler; I/O can only be done through data structures.

� When files are qualified, the names of the record formats can
be the same as the formats of other files. For example, you
can have FILE1.FMT1 and FILE2.FMT1.

IBM Rational software

14

A review of how RPG I and O specs work

When the compiler does generate I specs, you get program
fields defined from the fields in the file.

1 Fcustfile if e disk
2=ICUSTREC

3=I P 1 6 0ID

4=I A 7 56 NAME

5=I A 57 106 CITY

6 C if name = *blanks

Global Field References:

Field Attributes References

NAME A(50) 4D 6

8

IBM Rational software

15

What if there are no I and O specs?

When the compiler does not generate I specs, you don’t get
any program fields defined from the fields in the file.

5 P myProc b

6 Fcustfile if e disk

7 C if name = *blanks

Field References for subprocedure MYPROC:

Field Attributes References

RNF7030 NAME **UNDEF** 7

IBM Rational software

16

Instead of I and O specs

Instead, you define a data structure to hold the fields from the
file.

1 Fcustfile if e disk qualified

2 D custDs ds likerec(custfile.custrec)
3 /free

4 read custfile.custrec custDs;

5 if custDs.name = *blanks;

Global Field References:

Field Attributes References

CUSTDS DS(100) 2D 4M 5

ID P(11,0) 2D

NAME A(50) 2D 5

CITY A(50) 2D

9

IBM Rational software

17

ILE RPG – LIKEFILE – files defined like other files

� Using the LIKEFILE keyword, a file can be defined to use the
same settings as another File specification.

� QUALIFIED keyword is implied for externally-described. I/O
to the file can only be done through data structures.

� The LIKEFILE keyword is mainly used with file parameters.

Fcustfile if e disk qualified
Fcust2 likefile(custfile)
F extfile(cust2name)

The like-file CUST2 doesn’t specify any of the entries like
“Input” or “DISK”. It inherits those from the parent file
CUSTFILE.

IBM Rational software

18

ILE RPG – file parameters

Another major file-related enhancement for RPG is the ability to
pass files as parameters between procedures and programs.

Passing files as parameters allows you to control which
programs and procedures can “share” a file.

10

IBM Rational software

19

ILE RPG – file parameters

Scenario 1: A service program handles all the I/O for a file.

� Two different programs call the procedures in the service
program.

� PGM1 calls procedures to open the file and read record 1.

� It calls PGM2, which calls a procedure to chain to record 15.

� When PGM1 calls the read procedure again, it doesn’t get
record 2, it gets record 16.

� The programs are inadvertently sharing the file.

IBM Rational software

20

ILE RPG – file parameters

By using file parameters, the application can avoid these
problems.

The service program would not have its own file defined.
Instead, it would use the file parameter passed by PGM1 or
PGM2. PGM1 and PGM2 would be independent of each
other.

11

IBM Rational software

21

ILE RPG – file parameters

Scenario 2: A file is shared using OVRPRTF so PGM1 and
PGM2 can use it together

� PGM1 opens the printer file, writes some headers, then calls
PGM2

� PGM2 opens the printer file, and writes the detail records

� PGM2 calls PGM3 to get some information about a
particular record

� PGM3 opens the printer file, and writes some logging
records

� The shared override is inadvertently used by more
programs than was intended.

IBM Rational software

22

ILE RPG – file parameters

By using file parameters, the application can avoid these
problems.

PGM1 would open the file and pass it as a parameter to PGM2.
No override would be necessary for PGM1 and PGM2 to
“share” the file. When PGM3 opens the file, there would be
no shared override, so its use of the file would be
independent from PGM1 and PGM2.

12

IBM Rational software

23

ILE RPG – file parameters

Scenario 3: There are several procedures in a module, and
there is a file that only two of the procedures should be able
to use.

The file could be defined in global F specs, but then any
procedure in the module could use it.

By defining the file in one procedure and passing it as a
parameter to the other procedure, the programmer can be
sure that no other procedure can access the file.

IBM Rational software

24

ILE RPG – file parameters

� A prototyped parameter can be defined as a File parameter
using the LIKEFILE keyword.

� Any file related by LIKEFILE keywords to the same original
File specification may be passed as a parameter to the
procedure.

� Within the called procedure or program, all supported
operations can be done on the file parameter. However, I/O
to the file parameter can only be done through data
structures.

� RPG file parameters are not compatible with file parameters
in other languages such as C or COBOL.

13

IBM Rational software

25

ILE RPG – file parameter example

Here is an ordinary file and an ordinary data structure.
FcustF IF E K DISK
D custDs DS LIKEREC(custrec)

Here is a prototype for a procedure with a file parameter.
D getCust PR N
D custfile LIKEFILE(custF)
D id LIKE(custDs.id)
D info LIKEDS(custDs)

Here is a call to the procedure, passing the file as a parameter.
ok = getCust (custF : 12345 : custDs);

IBM Rational software

26

ILE RPG – file parameter example part 2

Here is the procedure that uses the file parameter.
P getCust B
D getCust PI N
D custfile LIKEFILE(custF)
D id LIKE(custDs.id)
D info LIKEDS(custDs)
/free

chain id custFile.rec info;
return %found(custFile);

The procedure is working directly on the file from the calling
procedure. If the file in the calling procedure had been at
end-of-file, it will now be positioned at the record for ID.

14

IBM Rational software

27

ILE RPG – file templates

A file can be a template too. Just add the TEMPLATE
keyword, and the file will only be used at compile time for
any LIKEFILE definitions that you need.

Use EXTDESC if the RPG file name is different from the actual
name.

FcustF_t IF E K DISK TEMPLATE
F EXTDESC(‘CUSTF’)

To define a “real” file that can be used at runtime, and that can
also be passed as a parameter, define the file using
LIKEFILE.

FcustF LIKEFILE(custF_t)
F EXTFILE(*EXTDESC)

IBM Rational software

28

ILE RPG – /COPY file with F and D specs

This is the /copy file for the getCust procedure. You should use
conditional compile to make sure your other RPG modules
can pick up either the F specs or the D specs.
/if defined(getFSpecs)
FcustF_t IF E K DISK TEMPLATE
/endif

/if defined(getDSpecs)
D getCust PR N
D custfile LIKEFILE(custF_t)
D id LIKE(custDs.id)
D info LIKEDS(custDs)
/endif

15

IBM Rational software

29

ILE RPG – using the /COPY file

The calling module has to do the /COPY twice, so it can define
its own file in the F specs.

/define getFSpecs
/copy getCust
/undefine getFSpecs
Fcustf likefile(custF_t)
F extfile(*extdesc)

/define getDSpecs
/copy getCust
/undefine getDSpecs

IBM Rational software

30

ILE RPG – using the /COPY file

The called module can do one /COPY to pick up both at once,
since it doesn’t need any of its own F specs.

/define getFSpecs
/define getDSpecs
/copy getCust

P getCust B

...

16

IBM Rational software

31

ILE RPG – what files can be parameters?

Fprtf1 O F 80 PRINTER

Fprtf2 O F 80 PRINTER

Fprtf3 LIKEFILE(prtf1)

Fprtf4 LIKEFILE(prtf3)

D prtLine PR

D fileparm LIKEFILE(prtf1)

The four files PRTF1, PRTF3, PRTF4, FILEPARM are in the same
“LIKEFILE family”, because they are all related to the “parent file”
PRTF1.

Any file in the same LIKEFILE family as the prototyped file parameter can be
passed as a parameter to the procedure, so PRTF1, PRTF3 or PRTF4
could be passed to the procedure.

� What about PRTF2? It’s identical to PRTF1 … but no.

IBM Rational software

32

Using RPG data structure I/O – a review

“I/O can only be done through data structures”

How many times has that appeared in this presentation so far?

The rule applies to qualified files, local files and file parameters.

17

IBM Rational software

33

Using RPG data structure I/O – continued

The steps to using a data structure for I/O are …

1. Define the data structure using LIKEREC or EXTNAME
FcustFile IF E DISK

D custDs1 DS LIKEREC(custRec:*INPUT)

D custDs2 E DS EXTNAME(custfile:*INPUT)

2. Code the data structure as the result field of the I/O
operation

read custFile custDs1;

3. Use the fields of the data structure instead of the standalone
fields that you would use if there were I specs
if custDs1.active = ‘Y’;

IBM Rational software

34

ILE RPG – result DS for EXFMT

EXFMT allows a result data structure. Prior to V6.1, EXFMT
was the only I/O operation that did not allow a result data
structure, due to the fact that the I/O buffers are different for
the input and output parts of EXFMT.

The data structure used with EXFMT is defined with usage type
*ALL

EXTNAME(file : fmt : *ALL)

or
LIKEREC(fmt : *ALL)

18

IBM Rational software

35

ILE RPG – result DS for EXFMT

FaskQuest CF E WORKSTN QUALIFIED

D QA DS LIKEREC(askQuest.ask : *ALL)
/free

// Set the output-capable subfields
QA.question = ’Do you want to continue?’;

QA.answer = ’Y’; // set the default

exfmt askQuest.ask QA;

// Check the input-capable subfields
if QA.answer <> ’Y’;

return;

endif;

IBM Rational software

36

ILE RPG – larger fields

RPG programmers have been struggling with the size limits for
string variables and data structures for several releases.

Historically, RPG programmers had little need for very large
variables, since all their data came from DB2/400 files which
have a maximum record length of 32K.

More recently, RPG programmers have been working with data
from other systems where the data can be much larger. It is
possible to deal with large amounts of data using RPG, but
the techniques are poorly understood, and the
implementations are error-prone.

19

IBM Rational software

37

ILE RPG – larger fields

No more artificial limits on the way variables are
defined.

The system’s limit of 16,773,104 for a single variable still
applies, but data structures, and A, C and G variables can
now have a size up to 16,773,104 bytes.

D bigDS DS 500000
D ...

D bigField S 1000000A VARYING

IBM Rational software

38

ILE RPG – larger fields

The LEN keyword can be used instead of the Length entry. It is
necessary if the length has more than 7 digits.

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords

D bigField S 9999999A

D biggerField S A LEN(10000000)

D biggestField S A LEN(16773104)

20

IBM Rational software

39

ILE RPG – larger fields

The VARYING keyword allows a parameter of either 2 or 4
indicating the number of bytes used to hold the length prefix.
VARYING(4) is assumed if the defined length of the definition
is over 65535.

D smallVarying S 10A VARYING
D bigVarying S 65536A VARYING
D smallVarying4 S 10A VARYING(4)

� SMALLVARYING has 2 bytes for the length prefix.
� BIGVARYING has 4 bytes for the length prefix.
� SMALLVARYING4 has 4 bytes for the length prefix.

IBM Rational software

40

ILE RPG – larger fields

%ADDR(varying_field :*DATA) can be used to get a pointer to
the data portion of a varying length field. Prior to V6.1, the
data was always 2 bytes after the start of the field; now it can
be 2 or 4 bytes.

D firstName S 10A VARYING
D lastName S 10A VARYING(4)
D pNameData S *
/free

pNameData = %addr(firstName : *DATA);
pNameData = %addr(lastName : *DATA);

Equivalent to this more error-prone code
pNameData = %addr(firstName) + 2;
pNameData = %addr(lastName) + 4;

21

IBM Rational software

41

ILE RPG – more array elements

Larger limit for DIM and OCCURS

� There is no arbitrary limit on the number of elements in an
array or occurrences in a multiple-occurrence data structure.

� The limit on the total size of an array or structure remains the
same; it cannot be larger than 16,773,104 bytes.

� For example
�If the elements of an array are 1 byte in size, the maximum DIM for the array is

16,773,104.
�If the elements of an array are 10 bytes in size, the maximum DIM for the array is

1,677,310 (16773104/10).

IBM Rational software

42

ILE RPG – longer literals

The RPG compiler also increased the size limits for string
literals. This is especially important for companies that
generate RPG source with literals for prepared SQL
statements, or for HTML data.

� Character literals can now have a length up to 16380
characters.

� UCS-2 literals can now have a length up to 8190 UCS-2
characters.

� Graphic literals can now have a length up to 16379 DBCS
characters.

22

IBM Rational software

43

ILE RPG - main without cycle

Most RPG modules being written today do not take advantage of the RPG
cycle; many RPG programmers are unaware of the presence of the RPG
cycle in their modules. V6.1 introduces an RPG module with a main
procedure that does not rely on the RPG cycle.

� MAIN keyword on the H specification designates one subprocedure as
being the main procedure, that is, the procedure that gets control when
the program gets called.

� Other than being the program-entry procedure, the main subprocedure is
like any other subprocedure. It does not use the RPG cycle.

� The prototype for the main subprocedure must have the EXTPGM
keyword; the main subprocedure can only be called by a program call.

IBM Rational software

44

ILE RPG - main without cycle, example

H MAIN(ordEntry)

D ordEntry PR EXTPGM(‘ORDENTRY’)
D custname 10A CONST

P ordEntry B
D ordEntry PI
D custname 10A CONST
... code the main procedure logic here
... when it reaches the end, it just returns
... *INLR has no meaning

P ordEntry E

23

IBM Rational software

45

ILE RPG – relaxed UCS-2 rules

Programmers are being asked to enable their applications to use data from
different character sets. This requirement comes from web-enabling
applications, and from companies operating in more than one country.

One of the steps in supporting multiple character sets is to use Unicode
fields in the database, instead of character or DBCS fields that only
support a single CCSID.

ILE RPG supports the UCS-2 data type, which includes support for UTF-16,
but the nature of the support means that it is extremely difficult to change
the data type of a database character or graphic field to be UCS-2.

RPG considers Character, UCS-2 and Graphic to be three separate data
types. To use these data types together in the same statement required
specific conversion using RPG built-in functions %CHAR, %UCS2 or
%GRAPH.

IBM Rational software

46

ILE RPG – relaxed UCS-2 rules

When a database field is changed from character to UCS-2, the RPG
programs using the field may be using the field with other character data.
The RPG compiler gives diagnostic error messages saying that the UCS-2
field cannot be used with the character data.

To make it easier to change the datatype of database fields to be UCS-2,
the compiler has changed to allow any of the string types to be used in
assignment and comparison operations without explicit conversion. The
compiler performs any needed conversions implicitly.

UCS-2 variables can now be initialized with character or graphic literals
without using the %UCS2 built-in function.

This enhancement is available in V5R3 and V5R4 with PTFs:
� V5R3M0 TGTRLS(*CURRENT): SI24532

� V5R4M0 TGTRLS(*CURRENT): SI26312

� V5R4M0 TGTRLS(*PRV) : SI25232

24

IBM Rational software

47

ILE RPG – reduce module size

To reduce the amount of static storage required by an RPG
module, the ILE RPG compiler now has an option to eliminate
unused variables from the compiled object:

� New values *UNREF and *NOUNREF are added to the OPTION keyword
for the CRTBNDRPG and CRTRPGMOD commands, and for the OPTION
keyword on the Control specification.

� The default remains *UNREF, meaning that unused variables are still
generated into the module.

� *NOUNREF indicates that unreferenced variables should not be
generated into the RPG module. This can reduce program size, and if
imported variables are not referenced, it can reduce the time taken to bind
a module to a program or service program.

IBM Rational software

48

ILE RPG - threads

We are all familiar with two jobs running simultaneously. The
jobs could be running different programs or the same
program.

It is possible for two jobs to access the same resources and
interfere with each other. For example, two jobs could each
get a pointer to the same user-space and if they both tried to
change the user-space data at the same time, the results
would not be correct.

But this type of interference is rare, and it’s easy to prevent it.

25

IBM Rational software

49

ILE RPG - threads

When an application is running multi-threaded, the job has
more than one “thread of execution”. Each thread has its own
program stack. Two or more things can be happening in the
job at exactly the same time.

The “thread safety” problem: If two parts of the application
try to use the same resource at the same time, the result
might not be correct.

With multiple threads, this interference is much more common,
and much more difficult to predict or prevent, than with
multiple jobs.

IBM Rational software

50

ILE RPG - threads

Example: The shared resource is program variable “i”, an
integer.

A job is running with two threads, and both happen to be
running in the same procedure.

These two statements happen at exactly the same time. What
will be the value of “i”? It’s impossible to guess.

ThreadA: i = 3 ThreadB: i = 5

This application is not thread safe.

To be thread safe, this application cannot allow two threads to
use this variable at the same time.

26

IBM Rational software

51

ILE RPG – threads prior to V6.1

Prior to V6.1, RPG could run safely in multiple
threads, using the THREAD(*SERIALIZE) support,
but each RPG module could be accessed by only
one thread at a time.

� prevents multiple threads accessing the variables in
the module

� impacts the overall performance and scalability of
the application

� each RPG module has the potential of being a
bottleneck

IBM Rational software

52

ILE RPG – threads in V6.1

In V6.1, RPG programmers have the additional option
of having an RPG module run concurrently in
multiple threads.

27

IBM Rational software

53

ILE RPG - threads

When THREAD(*CONCURRENT) is specified on the Control
specification of a module

�Multiple threads can run in the module at the same time.
�By default, static variables will be defined so that each thread will have its own copy of

the static variable.
�Individual variables can be defined to be shared by all threads using

STATIC(*ALLTHREAD).
�Individual procedures can be serialized so that only one thread can run them at one

time, by specifying SERIALIZE on the Procedure-Begin specification.

IBM Rational software

54

ILE RPG - threads

Using THREAD(*CONCURRENT) increases the total amount
of static storage used by the application.

Since each thread has its own copy of the static storage, the
total static storage used by the application is the size required
by the module times the number of threads using the module.

Some of the other enhancements in V6.1 are aimed at reducing
the amount of static storage required by an RPG module.

�OPTION(*NOUNREF)
�Local files and file parameters

28

IBM Rational software

55

ILE RPG - threads

If the application will be multi-threaded, the THREAD keyword
must be coded in every ILE RPG module.

THREAD(*SERIALIZE) and THREAD(*CONCURRENT)
modules can be mixed in an application.

The “Multithreaded Applications” section in the ILE RPG
Programmer’s Guide has some guidance about how to
choose.

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/to
pic/rzasc/sc09250758.htm#mthreadap

IBM Rational software

56

Threads

There is much more to thread-safety than protecting the static
storage in the modules.

Search for “multithreaded” in the Info Center.

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/ad
vanced/browse.jsp?searchQuery=multithreaded

29

IBM Rational software

57

Store parameter information in the program

In V5R2, the ILE RPG and ILE COBOL compilers were
enhanced to produce a file containing PCML (Program Call
Markup Language). This file was intended to be used by
WDSC tooling to help programmers use the Program Call
wizard.

It was not really convenient to have the PCML separate from
the program, but it was much more convenient and less error-
prone for programmers to use the generated PCML than to
manually enter the parameter information using the wizard.

Integrated Web Services also uses PCML, but it requires it to
be part of the program or service program.

http://www-03.ibm.com/systems/i/software/iws/index.html

IBM Rational software

58

Store parameter information in the program

Both the ILE RPG and ILE COBOL compilers are enhanced to
allow information about the parameters for the program or
procedures to be stored in the program.

The PCML can be placed in a stream file as before, or directly
in the module, or both.

The information can later be retrieved from a program or
service program containing the module, using the new
QBNRPII API.

30

IBM Rational software

59

Parameter info in program - commands

The PGMINFO command parameter for the CRTRPGMOD,
CRTCBLMOD, CRTBNDRPG and CRTBNDCBL commands
is enhanced to specify where the PCML is to go.

�The default location is the stream file specified by the INFOSTMF parameter
�PGMINFO(*PCML:*MODULE) says to place the PCML information directly in the

module. The PCML information becomes part of the program or service program
containing the module.

�PGMINFO(*PCML:*ALL) says to place the PCML information both in the module and in
the INFOSTMF stream file.

IBM Rational software

60

Parameter info in program – source files

H spec keyword for RPG or PROCESS option for COBOL
� The PGMINFO command parameter can be augmented or overridden by an H

spec keyword (ILE RPG) or PROCESS option (ILE COBOL).
�RPG: PGMINFO(*PCML:*MODULE) or PGMINFO(*NO)
�COBOL: PGMINFO(PCML MODULE) or PGMINFO(NOPGMINFO)

� If the source keyword specifies “module”, then it augments the PGMINFO
command parameter. For example, if the command requested *STMF, and the
source keyword specifies *MODULE, then the PCML will be generated both to the
stream file and into the module.

� If the keyword specifies “no”, then it overrides the PGMINFO command parameter.
No matter what was specified by the command parameter, no PCML information
will be generated by the compiler.

31

IBM Rational software

61

Parameter info in program – V5R4 PTFs

PTF support for V5R4

� Part of this support is available in V5R4 with PTFs.
�The H specification keyword for ILE RPG
�The PROCESS option for ILE COBOL
�The QBNRPII API

� The following V5R4M0 PTFs will provide the various parts
of this function

� 5722SS1 SI23544 (QBNRPII API)

� 5722SS1 SI27064 (Support for compilers)

� 5722WDS SI27061 (ILE RPG compiler PTF 1)

� 5722WDS SI27065 (ILE RPG compiler PTF 2)

� 5722WDS SI27154 (ILE COBOL compiler)

IBM Rational software

62

PTF: New options for XML-INTO

Two new options for XML-INTO available via a PTF for V6.1

� datasubf
Handles XML elements in this form

<employee type=”manager”>Jack Spratt</employee>

� countprefix
Reduces the need for the allowmissing=yes option by allowing you to add extra

“count” subfields.

See this RPG Café announcement:

http://www-949.ibm.com/software/rational/cafe/docs/DOC-2975

32

IBM Rational software

63

SQL Precompiler

� Supports all the new features in ILE RPG V6R1

� Except that it does not support VARYING(4), or any fields
larger than 32767. LOBs must still be used to handle large
data in SQL

� Host variables are scoped to the procedure instead of having
to be unique for the whole module. Also available via PTFs
for V5R4. See this RPG Café announcement:

http://www-949.ibm.com/software/rational/cafe/docs/DOC-2947

IBM Rational software

64

Alignment of floating point data on PowerPC

On PowerPc architecture, binary floating point operations are
much faster if the floating point variables are aligned.

� RPG aligns floating point standalone fields

� By default, RPG does not align floating point subfields in data
structures.

� Code the ALIGN keyword on a data structure to have floating
point subfields aligned

For more information:

http://www-03.ibm.com/systems/resources/pcrm_oct2008.pdf

33

IBM Rational software

65

Tooling for RPG programmers - RDi

RDi (Rational Developer for i)
�Remote Systems Explorer (RSE)
� Integrated debugger
�Application diagram
�Screen designer
�More …

IBM Rational software

66

Application diagram

34

IBM Rational software

67

Tooling for RPG programmers - RTCi

RTCi (Rational Team Concert for i)
�Collaboration tool to help manage projects
�Development environment for a whole team (RDi is

for each developer)
�Automate and enforce workflow practices
�Source control
�Change management
�Track enhancements, tasks, defects

IBM Rational software

68

RTCi dashboard

35

IBM Rational software

69

More

� RDi SOA
� Develop RPG and COBOL applications
� Create and consume web services
� Create Web 2.0 applications using RPG and COBOL via EGL
� more

� Rational Business Developer (RBD)
� EGL
� Web 2.0
� Web services
� More

� Rational Host Access Transformation Services (HATS)
� Extend 5250 applications to new users on web, mobile etc
� Fast return on investment with short learning curve
� More

IBM Rational software

70

Sandbox: Try out Rational Tools for i

� Rational Developer for i (RDi)

� RDi SOA (with EGL)

� Rational Host Access Transformation Services (HATS)

� X-Analysis from Databorough

http://www.ibm.com/developerworks/downloads/emsandbox/

36

IBM Rational software

71

RPG Cafe

Visit the RPG Cafe for
articles, tutorials, podcasts
and forums about RPG, RDi
and RTCi.

www.ibm.com/rational/cafe

IBM Rational software

7272

© Copyright IBM Corporation 2009. All rights reserved.
The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express or implied. IBM shall not be responsible
for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these materials
to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities referenced in these materials may
change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way.
IBM, the IBM logo, the on-demand business logo, Rational, the Rational logo, and other IBM products and services are trademarks of the International Business Machines Corporation,
in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

